

Uncertainties in SST and Sea Ice Analyses

And the work of the GCOS SST and sea ice Working Group

Nick Rayner, Third WCRP International Conference on Reanalysis, 31st January 2008

Introduction

The GCOS SST and sea ice Working Group

Collaborators

- The other members of the GCOS SST & SI WG are:
- Tom Smith², Alexey Kaplan³, Dick Reynolds², Liz Kent⁴, Ken Casey², Craig Donlon¹, Ed Harrison², Rasmus Tonboe⁵, Florence Fetterer⁶, Steve Ackley⁷, Pablo Clemente-Colon⁸, Per Gloersen⁹, Tony Worby¹⁰, Mark Drinkwater¹¹, Cathleen Geiger¹², John Stark¹, Vasily Smolyanitsky¹³, Walt Meier⁶, Stefan Kern¹⁴, Dirk Notz¹⁵, Jinro Ukita¹⁶
- Their affiliations are:
- ¹Met Office Hadley Centre, U.K., ²NOAA, U.S.A., ³Lamont-Doherty Earth Observatory of Columbia University, U.S.A., ⁴National Oceanography Centre, U.K., ⁵Danish Meteorological Institute, Denmark, ⁶National Snow and Ice Data Center, U.S.A., ⁷University of Texas at San Antonio, U.S.A, ⁸National Ice Center, U.S.A., ⁹N.A.S.A., U.S.A., ¹⁰University of Tasmania, Australia, ¹¹European Space Agency, ¹²Cold Regions Research and Engineering Laboratory, U.S.A., ¹³Arctic and Antarctic Research Institute, Russia, ¹⁴University of Hamburg, Germany, ¹⁵Max Planck Institute for Meteorology, Germany, ¹⁶Chiba University, Japan
- Those highlighted in bold contributed material for this presentation, as did **Dudley Chelton** and **John Kennedy**

This presentation covers the following areas

- Introduction
- Biases
- Inhomogeneities
- Sampling and measurement error
- Temporal and spatial resolution
- Choice of analysis technique
- GCOS SST/SI WG plans

SST: sampling and measurement error

Estimate of % of 5° weekly gridboxes with SST uncertainty < 0.5°C in 2006 from ICOADS

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTON AND NATURAL ENVIRONMENT RESEARCH COUNCIL

Courtesy of Liz Kent

© Crown copyright Met Office

Courtesy of John Kennedy

SST: spatial and temporal resolution

- Weekly OI.v2 (1°)
- Daily OI (1/4°)
- OSTIA (1/20°)
- RTG-HD (1/12°)

SST: analysis technique

NATIONAL OCEANIC AND

 RSST.v3 anomaly (new) stronger than ERSST.v2 (old) in early period

> Less damping in new analysis

60S-60N Recon Annual SSTA

00 1970 1990 1990 1900 1910 1920 1930 1940 1930 1960 1970 1980 19

ERSST.v2 RSST.v3 Had

Courtesy of Tom Smith

1933

© Crown copyright Met Office

Please ask me about the Antarctic later

2004

1978

Sea ice: spatial and temporal sampling and methodology

Tiepoint uncertainty (%) Concentration std dev (%) Atmosph. effects s.d. (%)

© Crown copyright Met Office

Andersen et al, 2007, JGR, 112

GCOS WG plans

- In order to "record and evaluate the differences among historical and near real time SST and SST/SI analyses and identify the sources of differences in the analyses "
 - SST analyses are being assembled
 - Initial basic intercomparisons will be done by May
 - Results will be discussed and published at CLIMAR3 meeting
 - Participation will then be invited by other groups and further analyses gathered
- A website is being set up by NODC to host the data and intercomparisons

Questions and answers

How can we help you achieve your objectives?

Data Anomalies: 11 Jan 2003 Differences lead to day-to-day noise in OI

 AVHRR day & night

- Note data scarcity
- Pathfinder: local time
- AMSR day & night
 - Note swath width & precipitation
 - Day night differences not always diurnal warming

SST: analysis technique

- LF difference
 - $|ERSST-HadISST| \leq 0.05^{\circ}C$
 - RMSD = $0.02^{\circ}C$
 - overall similar climate variation
 - Kaplan slightly more damped
- **ICOADS** differences
 - Cooler early (1901-1930)
 - Warmer after 1980
 - Both analyses may be damping LF anomalies

Courtesy of Tom Smith

Sea ice: inhomogeneities (Antarctic)

1978

1955 1961

2004

1898

Sea ice: analysis technique

Met Office Hadley Centre

Concentration anomalies for 2000-1 Red: -ve Green: +ve

Highlights spatial variability

Andersen et al, 2007, JGR, 112