モデル格子データ編

気象庁 地球環境・海洋部 気候情報課 平成 26 年 3 月

モデル格子データ編

改定履歴

版数	発行日	改定概要		
第1版	平成 26 年 3 月 3 日	初版発行		
第2版	平成 26 年 5 月 20 日	第6.1節の表に緯度と重みを追加		
		表 11-1 の修正		
第3版	平成 27 年 5 月 22 日	JRA-55 総合報告論文(Kobayashi et al. 2015)		
		を文献目録に追加		
第4版	平成27年10月14日	表 4-12 モデル面物理量平均値 (fcst_phy3m)		
		出力要素の雲仕事関数と雲底での上向きマスフ		
		ラックスについて注意書きを追加		
第5版	平成30年10月11日	表 11-1 に B005 及び BR05 を追加		
第6版	令和3年3月24日	第 10 章の平年値の統計期間を 1991~2020 年に		
		変更		

モデル格子データ編

目次

1.		はじめ	いて	7
2.		ファイ	ル形式	7
3.		ファイ	'ル名	7
4.		出力要	〔素	8
4.	. 1.	モデ	「ル格子データ	8
	4.	1. 1.	定数 (TL319)	8
	4.	1. 2.	全気柱積算解析値(anl_column)	8
	4.	1. 3.	等温位面解析值 (anl_isentrop)	8
	4.	1.4.	陸面解析値(anl_land)	9
	4.	1. 5.	モデル面解析値 (anl_mdl)	9
	4.	1.6.	積雪深解析値 (anl_snow)	10
	4.	1.7.	地表面解析值(anl_surf)	10
	4.	1.8.	全気柱積算予報値(fcst_column)	10
	4.	1.9.	陸面予報値(fcst_land)	11
	4.	1. 10.	モデル面予報値(fcst_mdl)	11
	4.	1. 11.	2 次元物理量平均値(fcst_phy2m)	12
	4.	1. 12.	モデル面物理量平均値(fcst_phy3m)	13
	4.	1. 13.	陸面物理量平均値(fcst_phyland)	13
	4.	1. 14.	2 次元物理量瞬間値(fcst_surf)	14
	4.	1. 15.	海氷 (ice)	14
	4.	1. 16.	2 次元物理量極値(minmax_surf)	15
5.		植生の	種類	15
6.		格子系		16
6.	. 1.	準規]則ガウス緯度/経度格子系	16
7.		鉛直座	经標	21
7.	. 1.	ハイ	ブリッド座標系	21
7.	. 2.	温位	工座標系	23
7.	. 3.	陸面	jモデルの土壌層	23
8.		物理定	:数	24
9.			一値	
9.	. 1.	時別	J月統計値(Monthly_diurnal)	24
9.	. 2.	月絲	၏値(Monthly)	25
10.		平年值	Ī	25
10	0. 1	. 目	別平滑化平年値	25

モデル格子データ編

10. 2.	月別平年値	26
11. 本計	-算ストリーム	26
12. JRA-	-25 プロダクトからの変更点	27
12. 1.	要素分類	27
12. 2.	ファイル名中の日時	28
12. 3.	追加・変更要素	28
12. 4.	廃止要素	29
12. 5.	出力時間解像度	30
12.6.	鉛直座標	30
12. 6. 1	1. ハイブリッド座標系	30
12. 6. 2	2. 温位座標系	30
12.7.	月統計値	31
文献目録.		31

モデル格子データ編

図表目次

表	3-1	累年値ファイルの命名規則	7
表	3-2	平年値ファイルの命名規則	7
表	4-1	定数 (TL319) 出力要素	8
表	4-2	全気柱積算解析値(anl_column)出力要素	8
表	4-3	等温位面解析值(anl_isentrop)出力要素	9
表	4-4	陸面解析値(anl_land)出力要素	9
表	4-5	モデル面解析値 (anl_mdl) 出力要素	9
表	4-6	積雪深解析値(anl_snow)出力要素	10
表	4-7	地表面解析値(anl_surf)出力要素	10
表	4-8	全気柱積算予報値(fcst_column)出力要素	10
表	4-9	陸面予報値(fcst_land)出力要素	11
表	4-10	モデル面予報値(fcst_mdl)出力要素	11
表	4-11	2 次元物理量平均値(fcst_phy2m)出力要素	12
表	4-12	モデル面物理量平均値(fcst_phy3m)出力要素	13
表	4-13	陸面物理量平均値(fcst_phyland)出力要素	14
表	4-14	2 次元物理量瞬間値(fcst_surf)出力要素	14
表	4-15	海氷 (ice) 出力要素	14
表	4-16	2次元物理量極値(minmax_surf)出力要素	15
表	5-1	植生の種類(符号表 JMA-252)	15
表	6-1	モデル格子の緯度と各緯線上の格子点の個数(#1~40)	17
表	6-2	モデル格子の緯度と各緯線上の格子点の個数(#41~80)	18
表	6-3	モデル格子の緯度と各緯線上の格子点の個数(#81~120)	19
表	6-4	モデル格子の緯度と各緯線上の格子点の個数(#121~160)	20
表	7-1	モデル面(第 1~39 層)	22
表	7-2	モデル面(第 40~60 層)	23
表	7-3	陸面モデルの土壌層	24
表	8-1	物理定数	24
表	9-1	月統計値の期間の指示符	25
表	11-1	JRA-55 本計算ストリーム	27
表	12-1	カテゴリーの変更例 (anl_mdl の場合)	28
表	12-2	カテゴリーの変更例(fcst_phy2m の場合)	28
表	12-3	ファイル名中の日時の変更例(fcst_phy2m.1981010100 の場合	•)
			28
表	12-4	等温位面解析値(anl_isentrop)廃止要素	29

モデル格子データ編

表	12-5	モデル面予報値(fcst_mdl)廃止要素	 29
表	12-6	2 次元物理量 (fcst_phy2m) 廃止要素	 29
表	12-7	3 次元物理量 (fcst_phy3m) 廃止要素	 30
表	12-8	陸面物理量(fcst_phyland)廃止要素	 30

1. はじめに

気象庁は、1958 年以降の期間を対象とした気象庁 55 年長期再解析「JRA-55 (Japanese 55-year Reanalysis)」プロジェクトを実施している(Kobayashi et al. 2015)。本資料では、JRA-55 プロダクトの概要と、JRA-25 プロダクト (Onogi et al. 2007)からの変更点について、説明する。

2. ファイル形式

日別値・月統計値・平年値ともに、二進形式格子点資料気象通報式(第1版) (Gridded binary (GRIB) Edition 1) (気象庁 2013; WMO 2011) で作成されている(日別値の出力時間間隔はカテゴリーにより異なり、3時間値・6時間値・24時間値がある)。

3. ファイル名

JRA-55 プロダクトのファイル名は, 累年値については表 3-1, 平年値については表 3-2 の命名規則に従う。

表 3-1 累年値ファイルの命名規則

期間	種類	ファイル名	
日別値	2次元場	〈カテゴリー〉. 〈年〉〈月〉〈日〉〈時〉	
(Daily)	3次元場	〈カテゴリー〉_〈パラメータ〉.〈年〉〈月〉〈日〉〈時〉	
	2次元場,平均	〈カテゴリー〉. 〈年〉〈月〉_〈時〉	
時別月統計值	2次元場,分散	〈カテゴリー〉_var. 〈年〉〈月〉_〈時〉	
(Monthly_diurnal)	3次元場,平均	〈カテゴリー〉_〈パラメータ〉.〈年〉〈月〉_〈時〉	
	3次元場,分散	〈カテゴリー〉_〈パラメータ〉_var.〈年〉〈月〉_〈時〉	
	2次元場,平均	〈カテゴリー〉. 〈年〉〈月〉	
月統計値	2次元場,分散	〈カテゴリー〉_var. 〈年〉〈月〉	
(Monthly)	3次元場,平均	〈カテゴリー〉_〈パラメータ〉.〈年〉〈月〉	
	3次元場,分散	〈カテゴリー〉_〈パラメータ〉_var.〈年〉〈月〉	

表 3-2 平年値ファイルの命名規則

期間	種類	ファイル名	
日別平滑化平年値	2次元場	<カテゴリー>. clim<統計期間>. day<月><日>	
(Daily)	3次元場	〈カテゴリー〉_〈パラメータ〉. clim〈統計期間〉. day〈月〉〈日〉	
	2次元場,平均	<カテゴリー>. clim<統計期間>. mon<月>	
(Monthly_diurnal, Monthly)	3次元場,平均	〈カテゴリー〉_〈パラメータ〉. clim〈統計期間〉. mon〈月〉	

4. 出力要素

4.1. モデル格子データ

4.1.1. 定数(TL319)

定数 (TL319) には、表 4-1 の要素を出力している。

表 4-1 定数 (TL319) 出力要素

数字 符号	パラメータ	単位
6	ジオポテンシャル	$m^2 s^{-2}$
81	陸域(1=陸, 0=海)	割合
252	M目 /→ (/) 不用 4目	符号表 JMA-252

4.1.2. 全気柱積算解析値(anl_column)

全気柱積算解析値(anl_column)には,客観解析で作成された表 4-2 の要素を全気柱積算したものを 6 時間毎(00,06,12,18UTC)に出力している。

表 4-2 全気柱積算解析値 (anl_column) 出力要素

数字 符号	パラメータ	単位
54	可降水量	${\rm kg~m}^{-2}$
152	水蒸気フラックス,南北成分	kg m ⁻¹ s ⁻¹
157	水蒸気フラックス,東西成分	$kg m^{-1} s^{-1}$
190	熱エネルギーフラックス,東西成分 ⁺	$\mathrm{W}~\mathrm{m}^{-1}$
191	熱エネルギーフラックス,南北成分 [⁺]	$\mathrm{W}~\mathrm{m}^{-1}$

⁺ 第 12.3 節「追加・変更要素」を参照

注:可降水量は水蒸気のみを含む。

4.1.3. 等温位面解析值(anl_isentrop)

等温位面解析値 (anl_isentrop) には,客観解析で作成された表 4-3 の要素を,第7.2 節「温位座標系」に列挙した等温位面に対して,6 時間毎 (00,06,12,18UTC) に出力している。

但し、比湿については、270~400Kの14層のみ出力している。

表 4-3 等温位面解析值 (anl_isentrop) 出力要素

数字 符号	パラメータ	単位	ファイル名
1	気圧*	Pa	anl_isentrop_pres
4	ポテンシャル渦度	$\mathrm{K}\ \mathrm{m}^2\ \mathrm{kg}^{-1}\ \mathrm{s}^{-1}$	anl_isentrop_pvor
7	ジオポテンシャル高度	gpm	anl_isentrop_hgt
33	風のu成分	$m s^{-1}$	anl_isentrop_ugrd
34	風のv成分	$m s^{-1}$	anl_isentrop_vgrd
37	モンゴメリーの流線関数	$m^2 s^{-2}$	anl_isentrop_mntsf
39	鉛直速度	Pa s ⁻¹	anl_isentrop_vvel
51	比湿	kg kg ⁻¹	anl_isentrop_spfh
132	ブラント・バイサラ振動数の二乗	s ⁻²	anl_isentrop_bvf2

⁺ 第12.3節「追加・変更要素」を参照

4.1.4. 陸面解析值(anl_land)

陸面解析値 (anl_land) には、陸面解析で作成された表 4-4 の層の要素を 6 時間毎 (00, 06, 12, 18UTC) に出力している。

表 4-4 陸面解析値 (anl_land) 出力要素

数字 符号	パラメータ	単位	等位面及び層
65	積算積雪の水当量	kg m ⁻²	地表面
144	キャノピーの温度	K	地表面
145	地面・下草の温度	K	地表面
85	土壤温度	K	全土壌(1層とみなす)
225	土壤水分飽和度	割合	陸面モデルの土壌層

4.1.5. モデル面解析値(anl_mdl)

モデル面解析値 (an1_md1) には,客観解析で作成された 表 4-5 の要素を,第 7.1 節「ハイブリッド座標系」に列挙したモデル面に対して,6 時間毎 (00,06,12,18UTC) に出力している。

表 4-5 モデル面解析値 (anl_mdl) 出力要素

数字 符号	パラメータ	単位	ファイル名
7	ジオポテンシャル高度	gpm	anl_mdl_hgt
11	気温	K	anl_mdl_tmp
33	風のu成分	$\mathrm{m\ s}^{-1}$	anl_mdl_ugrd
34	風のv成分	$\mathrm{m\ s}^{-1}$	anl_mdl_vgrd
39	鉛直速度	Pa s ⁻¹	anl_mdl_vvel
51	比湿	kg kg ⁻¹	anl_mdl_spfh

4.1.6. 積雪深解析值(anl_snow)

積雪深解析値 (anl_snow) には、積雪深解析で作成された表 4-6 の要素を毎日 18UTC に出力している。

表 4-6 積雪深解析値 (anl_snow) 出力要素

文字 子号	パラメータ	単位	等位面及び層
66	積雪の深さ	m	地表面

4.1.7. 地表面解析值(anl_surf)

地表面解析値 (anl_surf) には,客観解析で作成された表 4-7 の高度の要素を 6 時間毎 (00,06,12,18UTC) に出力している。

表 4-7 地表面解析值 (anl_surf) 出力要素

数字 符号	パラメータ	単位	等位面及び層
1	気圧	Pa	地表面(地面又は水面)
11	気温	K	2m
13	温位	K	地表面(地面又は水面)
51	比湿	kg kg ⁻¹	2m
52	相対湿度	%	2m
33	風のu成分	$\mathrm{m\ s}^{-1}$	10m
34	風のv成分	m s ⁻¹	10m

注:日別値ファイル中の要素の並び(表 4-7の順)と月統計値・平年値ファイル中の要素の並び(1, 13, 11, 51, 52, 33, 34の順)は異なる。

4.1.8. 全気柱積算予報値(fcst_column)

全気柱積算予報値 (fcst_column) には、表 4-8 の要素の 3 時間予報値 (03, 09, 15, 21UTC) と 6 時間予報値 (00, 06, 12, 18UTC) を全気柱積算したものを出力している。

表 4-8 全気柱積算予報値(fcst_column)出力要素

数字 符号	パラメータ	単位
10	オゾン全量	Dobson
54	可降水量	kg m ⁻²
58	雲氷⁺	kg m ⁻²
152	水蒸気フラックス,南北成分*	$kg m^{-1} s^{-1}$
157	水蒸気フラックス,東西成分*	$kg m^{-1} s^{-1}$
190	熱エネルギーフラックス,東西成分 ⁺	$\mathrm{W}~\mathrm{m}^{-1}$
191	熱エネルギーフラックス,南北成分 [⁺]	$W m^{-1}$
227	雲液水量 [⁺]	kg m ⁻²

^{†,*} 第12.3節「追加・変更要素」を参照注:可降水量は水蒸気のみを含む。

4.1.9. 陸面予報値(fcst_land)

陸面予報値 (fcst_land) には,表 4-9 の層の要素の3 時間予報値 (03,09,15,21UTC) と6 時間予報値 (00,06,12,18UTC) を出力している。

表 4-9 陸面予報値 (fcst_land) 出力要素

数字 符号	パラメータ	単位	等位面及び層
65	積算積雪の水当量*	kg m ⁻²	地表面
66	積雪の深さ *	m	地表面
144	キャノピーの温度	K	地表面
145	地面・下草の温度	K	地表面
223	キャノピーの水分量	m	地表面
224	地面・下草の水分量	m	地表面
85	土壤温度	K	全土壌(1層とみなす)
225	土壤水分飽和度+	割合	陸面モデルの土壌層
226	土壌水分量⁺	kg m ⁻³	陸面モデルの土壌層

⁺ 第 12.3 節「追加・変更要素」を参照

4.1.10. モデル面予報値(fcst_mdl)

モデル面予報値 (fcst_mdl) には, 第 7.1 節「ハイブリッド座標系」に列挙したモデル面に対して,表 4-10 の要素の 6 時間予報値 (00,06,12,18UTC) を出力している。

表 4-10 モデル面予報値 (fcst_mdl) 出力要素

数字 符号	パラメータ	単位	ファイル名
7	ジオポテンシャル高度	gpm	fcst_mdl_hgt
11	気温	K	fcst_mdl_tmp
33	風のu成分	$\mathrm{m\ s}^{-1}$	fcst_mdl_ugrd
34	風のv成分	$m s^{-1}$	fcst_mdl_vgrd
39	鉛直速度	Pa s ⁻¹	fcst_mdl_vvel
51	比湿	kg kg ⁻¹	fcst_mdl_spfh
71	全雲量*	%	fcst_mdl_tcdc
221	雲水量	kg kg ⁻¹	fcst_mdl_cwat
228	雲液水量 [⁺]	kg kg ⁻¹	fcst_mdl_clwc
229	雲氷量⁺	kg kg ⁻¹	fcst_mdl_ciwc
230	雲底での上向きマスフラックス	$kg m^{-2} s^{-1}$	fcst_mdl_mflxb
237	オゾン質量混合比	mg kg ⁻¹	fcst_mdl_ozone

^{+,*} 第 12.3 節「追加・変更要素」を参照

4.1.11. 2 次元物理量平均值(fcst_phy2m)

2 次元物理量平均値 (fcst_phy2m) には、表 4-11 の高度の要素の 0~3 時間 予報平均値 (00-03, 06-09, 12-15, 18-21UTC) と 3~6 時間予報平均値 (03-06, 09-12, 15-18, 21-24UTC) を出力している。

なお、ファイル名中の日時は平均期間の開始日時を表している。

表 4-11 2 次元物理量平均值(fcst_phy2m)出力要素

数字 符号	パラメータ	単位	等位面及び層
1	気圧	Pa	地表面(地面又は水面)
57	蒸発量⁺	mm day ⁻¹	地表面(地面又は水面)
61	総降水量*	mm day ⁻¹	地表面(地面又は水面)
62	ラージスケールの降水量	mm day ⁻¹	地表面(地面又は水面)
63	対流性降水量	mm day ⁻¹	地表面(地面又は水面)
64	降雪率の水当量	mm day ⁻¹	地表面(地面又は水面)
121	潜熱フラックス	$\mathrm{W}~\mathrm{m}^{-2}$	地表面(地面又は水面)
122	顕熱フラックス	$\mathrm{W}~\mathrm{m}^{-2}$	地表面(地面又は水面)
124	運動量フラックス,u成分	$\mathrm{N} \ \mathrm{m}^{-2}$	地表面(地面又は水面)
125	運動量フラックス,v成分	N m ⁻²	地表面(地面又は水面)
147	果四风分	N m ⁻²	地表面(地面又は水面)
148	重力波抵抗長波運動量フラックス, 南北成分	N m ⁻²	地表面(地面又は水面)
154	重力波抵抗短波運動量フラックス, 南北成分	N m ⁻²	地表面(地面又は水面)
159	重力波抵抗短波運動量フラックス, 東西成分	N m ⁻²	地表面(地面又は水面)
160	短波放射フラックス(上向き,晴天)	W m ⁻²	地表面(地面又は水面)
161	短波放射フラックス(下向き,晴天)	W m ⁻²	地表面(地面又は水面)
163	長波放射フラックス(下向き,晴天)	$\mathrm{W}~\mathrm{m}^{-2}$	地表面(地面又は水面)
170	深い積雲対流の発生率 ⁺	%	地表面(地面又は水面)
171	浅い積雲対流の発生率*	%	地表面(地面又は水面)
172	層積雲スキームの働く割合 ⁺	%	地表面(地面又は水面)
204	短波放射フラックス(下向き)	W m ⁻²	地表面(地面又は水面)
205	長波放射フラックス(下向き)	$\mathrm{W}~\mathrm{m}^{-2}$	地表面(地面又は水面)
211	短波放射フラックス(上向き)	W m ⁻²	地表面(地面又は水面)
212	長波放射フラックス(上向き)	W m ⁻²	地表面(地面又は水面)
160	短波放射フラックス(上向き,晴天)	$\mathrm{W}~\mathrm{m}^{-2}$	大気の名目上の上端
162	長波放射フラックス(上向き,晴天)	$\mathrm{W}~\mathrm{m}^{-2}$	大気の名目上の上端
204	短波放射フラックス(下向き)	$\mathrm{W}~\mathrm{m}^{-2}$	大気の名目上の上端
211	短波放射フラックス(上向き)	W m ⁻²	大気の名目上の上端
212	長波放射フラックス(上向き)	$\mathrm{W}~\mathrm{m}^{-2}$	大気の名目上の上端

^{*} 第 12.3 節「追加・変更要素」を参照

4.1.12. モデル面物理量平均値(fcst phy3m)

モデル面物理量平均値 (fcst_phy3m) には、第 7.1 節「ハイブリッド座標系」に列挙したモデル面に対して、表 4-12 の要素の $0\sim6$ 時間予報平均値 (00-06, 06-12, 12-18, 18-24UTC) を出力している。

なお、ファイル名中の日時は平均期間の開始日時を表している。

表 4-12 モデル面物理量平均値(fcst_phy3m)出力要素

数字 符号	パラメータ	単位	ファイル名
146	雲仕事関数#	J kg ⁻¹	fcst_phy3m_cwork
151	断熱過程によるuの変化率	$m s^{-1} day^{-1}$	fcst_phy3m_adua
165	断熱過程によるvの変化率	$m s^{-1} day^{-1}$	fcst_phy3m_adva
173	重力波抵抗によるuの変化率	$m s^{-1} day^{-1}$	fcst_phy3m_gwdua
174	重力波抵抗によるvの変化率	m s ⁻¹ day ⁻¹	fcst_phy3m_gwdva
222	断熱過程による気温の変化率(加熱率)	K day ⁻¹	fcst_phy3m_adhr
230	雲底での上向きマスフラックス ^{##}	$kg m^{-2} s^{-1}$	fcst_phy3m_mflxb
231	上向きマスフラックス	$kg m^{-2} s^{-1}$	fcst_phy3m_mflux
236	断熱過程による比湿の変化率	kg kg ⁻¹ day ⁻¹	fcst_phy3m_admr
239	対流によるuの変化率	m s ⁻¹ day ⁻¹	fcst_phy3m_cnvua
240	対流によるvの変化率	m s ⁻¹ day ⁻¹	fcst_phy3m_cnvva
241	ラージスケールの降水による気温の変化率(加 熱率)	K day ⁻¹	fcst_phy3m_lrghr
242	対流による気温の変化率(加熱率)	K day ⁻¹	fcst_phy3m_cnvhr
243	対流による比湿の変化率	kg kg ⁻¹ day ⁻¹	fcst_phy3m_cnvmr
246	鉛直拡散による気温の変化率(加熱率)	K day ⁻¹	fcst_phy3m_vdfhr
247	鉛直拡散によるuの変化率	$m s^{-1} day^{-1}$	fcst_phy3m_vdfua
248	鉛直拡散によるvの変化率	$m s^{-1} day^{-1}$	fcst_phy3m_vdfva
249	鉛直拡散による比湿の変化率	kg kg ⁻¹ day ⁻¹	fcst_phy3m_vdfmr
250	短波放射による気温の変化率(加熱率)	K day ⁻¹	fcst_phy3m_swhr
251	長波放射による気温の変化率(加熱率)	K day ⁻¹	fcst_phy3m_lwhr
253	ラージスケールの降水による比湿の変化率	kg kg ⁻¹ day ⁻¹	fcst_phy3m_lrgmr

[#] 雲仕事関数の第1層〜第10層の値は、物理過程の仕様上、常に0であるが、第2層〜第5層には積雲対流過程の作業変数が出力されている。これらのデータを参照しないよう注意願いたい。

4.1.13. 陸面物理量平均値(fcst_phyland)

陸面物理量 (fcst_phyland) には、表 4-13 の層の要素の $0\sim3$ 時間予報平均値 (00-03, 06-09, 12-15, 18-21UTC) と $3\sim6$ 時間予報平均値 (03-06, 09-12, 15-18, 21-24UTC) を出力している。

なお、ファイル名中の日時は平均期間の開始日時を表している。

[#] 雲底での上向きマスフラックスの第1層~第10層の値は、物理過程の仕様上、常に0であるが、第1層~第3層には積雲対流過程の作業変数が出力されている。これらのデータを参照しないよう注意願いたい。

表 4-13 陸面物理量平均値(fcst_phyland)出力要素

数字 符号	パラメータ	単位	等位面及び層
90	流出量	mm day ⁻¹	地表面
155	土壌への下向き熱フラックス	$\mathrm{W}~\mathrm{m}^{-2}$	地表面
	蒸散	$\mathrm{W}~\mathrm{m}^{-2}$	地表面
203	キャノピー面にたまった水からの潜熱フラック ス	W m ⁻²	地表面
90	流出量⁺	mm day ⁻¹	土壌底面

⁺ 第12.3節「追加・変更要素」を参照

4.1.14. 2 次元物理量瞬間値(fcst_surf)

2 次元物理量瞬間値 (fcst_surf) には,表 4-14 の高度の要素の 3 時間予報値 (03,09,15,21UTC) と 6 時間予報値 (00,06,12,18UTC) を出力している。

表 4-14 2 次元物理量瞬間値(fcst_surf)出力要素

数字 符号	パラメータ	単位	等位面及び層
1	気圧	Pa	地表面(地面又は水面)
83	地表面粗度	m	地表面(地面又は水面)
118	輝度温度+	K	地表面(地面又は水面)
71	全雲量*	%	90 - 1100 hPa
75	上層雲量*	%	90 - 500 hPa
74	中層雲量*	%	500 - 850 hPa
73	下層運量*	%	850 - 1100 hPa
2	海面更正気圧	Pa	平均海面
11	気温	K	2m
51	比湿	kg kg ⁻¹	2m
52	相対湿度	%	2m
33	風のu成分	m s ⁻¹	10m
34		m s ⁻¹	10m

^{+,*} 第 12.3 節「追加・変更要素」を参照

4.1.15. 海氷 (ice)

海氷 (ice) には、表 4-15 の要素を 3 時間毎に出力している。

表 4-15 海氷 (ice) 出力要素

	数字 符号	パラメータ	単位
Ì	91	氷域(1=氷あり、0=氷なし)	割合

4.1.16.2 次元物理量極值(minmax_surf)

2次元物理量極値 (minmax_surf) には、表 4-16 の高度の要素の $0\sim3$ 時間予報極値 (00-03, 06-09, 12-15, 18-21UTC) と $3\sim6$ 時間予報極値 (03-06, 09-12, 15-18, 21-24UTC) を出力している。

なお、ファイル名中の日時は有効期間の終了日時を表している。

2 次元物理量極値 (minmax_surf) の作成は日別値のみで、月統計値は作成していない。

表 4-16 2 次元物理量極値 (minmax_surf) 出力要素

数字 符号	パラメータ	単位	等位面及び層
15	最高気温	K	2m
16	最低気温	K	2m
219	最大風速	m s ⁻¹	10m

5. 植生の種類

JRA-55 で定義されている植生の種類は以下の通り。

表 5-1 植生の種類 (符号表 JMA-252)

数字 符号	意味
0	海・陸水
1	常緑広葉樹
2	落葉広葉樹
3	落葉広葉樹+常緑針葉樹
4	常緑針葉樹
5	落葉針葉樹
6	草原と落葉広葉樹木
7	草原
8	落葉広葉樹木の疎林
9	半砂漠
10	ツンドラ
11	砂漠
12	耕作地 (麦畑)
13	氷

6. 格子系

6.1. 準規則ガウス緯度/経度格子系

モデル格子データは準規則ガウス緯度/経度格子系で出力している。各格子点の緯度は分点数 320 のガウスールジャンドル公式の分点に対応している。各緯線上の格子点の個数は緯度により異なり(表 6-1、表 6-2、表 6-3、表 6-4)、標準子午線を始点として等間隔に並んでいる。

なお、表 6-1、表 6-2、表 6-3、表 6-4 には、分点数 320 のガウスールジャンドル公式の重みも併せて記してある。

表 6-1 モデル格子の緯度と各緯線上の格子点の個数 (#1~40)

#	(±) 緯度	重み	格子点数
1	8. 95700895506066E+01	7. 22417022893012E-05	48
2	8. 90131761310220E+01	1. 68158195616948E-04	64
3	8. 84529738367130E+01	2. 64200571979866E-04	80
4	8. 78920284453444E+01	3. 60229901103989E-04	80
5	8. 73308011797376E+01	4. 56227095866134E-04	96
6	8. 67694375145276E+01	5. 52181197609065E-04	112
7	8. 62079976214231E+01	6. 48082526890580E-04	112
8	8. 56465108479528E+01	7. 43921712961107E-04	128
9	8. 50849932009119E+01	8. 39689484512363E-04	128
10	8. 45234541489144E+01	9. 35376611415834E-04	144
11	8. 39618996497181E+01	1. 03097388562788E-03	144
12	8. 34003336387369E+01	1. 12647211435034E-03	160
13	8. 28387588197095E+01	1. 22186211760014E-03	160
14	8. 22771771114337E+01	1. 31713472754676E-03	192
15	8. 17155899132664E+01	1. 41228078862246E-03	192
16	8. 11539982697129E+01	1. 50729115799506E-03	192
17	8. 05924029761777E+01	1. 60215670622107E-03	192
18	8. 00308046490314E+01	1. 69686831799275E-03	224
19	7. 94692037732916E+01	1. 79141689293615E-03	224
20	7. 89076007358379E+01	1.88579334643737E-03	224
21	7. 83459958490356E+01	1. 97998861048504E-03	224
22	7. 77843893678486E+01	2. 07399363452170E-03	240
23	7. 72227815024451E+01	2. 16779938630021E-03	240
24	7. 66611724276204E+01	2. 26139685274268E-03	256
25	7. 60995622899381E+01	2. 35477704080024E-03	256
26	7. 55379512132081E+01	2. 44793097831276E-03	288
27	7. 49763393027374E+01	2. 54084971486788E-03	288
28	7. 44147266486620E+01	2. 63352432265867E-03	288
29	7. 38531133285838E+01	2. 72594589733983E-03	288
30	7. 32914994096763E+01	2. 81810555888202E-03	288
31	7. 27298849503795E+01	2. 90999445242416E-03	320
32	7. 21682700017747E+01	3. 00160374912351E-03	320
33	7. 16066546087075E+01	3. 09292464700346E-03	320
34	7. 10450388107113E+01	3. 18394837179883E-03	320
35	7. 04834226427713E+01	3. 27466617779859E-03	320
36	6. 99218061359604E+01	3. 36506934868594E-03	336
37	6. 93601893179717E+01	3. 45514919837554E-03	336
38	6. 87985722135654E+01	3. 54489707184801E-03	384
39	6. 82369548449477E+01	3. 63430434598132E-03	384
40	6. 76753372320917E+01	3. 72336243037927E-03	384

表 6-2 モデル格子の緯度と各緯線上の格子点の個数 (#41~80)

#	(±) 緯度	重み	格子点数
41	6. 71137193930113E+01	3. 81206276819674E-03	384
42	6. 65521013439961E+01	3. 90039683696182E-03	384
43	6. 59904830998127E+01	3. 98835614939459E-03	384
44	6. 54288646738789E+01	4. 07593225422256E-03	384
45	6. 48672460784143E+01	4. 16311673699262E-03	384
46	6. 43056273245713E+01	4. 24990122087953E-03	400
47	6. 37440084225492E+01	4. 33627736749070E-03	400
48	6. 31823893816941E+01	4. 42223687766737E-03	400
49	6. 26207702105861E+01	4. 50777149228198E-03	432
50	6. 20591509171167E+01	4. 59287299303171E-03	432
51	6. 14975315085564E+01	4. 67753320322809E-03	432
52	6. 09359119916146E+01	4. 76174398858260E-03	432
53	6. 03742923724930E+01	4. 84549725798827E-03	432
54	5. 98126726569327E+01	4. 92878496429701E-03	432
55	5. 92510528502565E+01	5. 01159910509285E-03	448
56	5. 86894329574061E+01	5. 09393172346077E-03	448
57	5. 81278129829758E+01	5. 17577490875123E-03	448
58	5. 75661929312427E+01	5. 25712079734024E-03	480
59	5. 70045728061936E+01	5. 33796157338490E-03	480
60	5. 64429526115493E+01	5. 41828946957433E-03	480
61	5. 58813323507866E+01	5. 49809676787602E-03	480
62	5. 53197120271579E+01	5. 57737580027733E-03	480
63	5. 47580916437092E+01	5. 65611894952227E-03	480
64	5. 41964712032965E+01	5. 73431864984338E-03	512
65	5. 36348507085999E+01	5. 81196738768865E-03	512
66	5. 30732301621377E+01	5. 88905770244343E-03	512
67	5. 25116095662779E+01	5. 96558218714727E-03	512
68	5. 19499889232498E+01	6. 04153348920559E-03	512
69	5. 13883682351539E+01	6. 11690431109609E-03	512
70	5. 08267475039710E+01	6. 19168741106998E-03	512
71	5. 02651267315709E+01	6. 26587560384770E-03	560
72	4. 97035059197200E+01	6. 33946176130936E-03	560
73	4. 91418850700887E+01	6. 41243881317955E-03	560
74	4. 85802641842574E+01	6. 48479974770674E-03	560
75	4. 80186432637230E+01	6. 55653761233693E-03	560
76	4. 74570223099043E+01	6. 62764551438165E-03	560
77	4. 68954013241470E+01	6. 69811662168028E-03	560
78	4. 63337803077285E+01	6. 76794416325643E-03	560
79	4. 57721592618623E+01	6. 83712142996855E-03	560
80	4. 52105381877018E+01	6. 90564177515453E-03	560

表 6-3 モデル格子の緯度と各緯線上の格子点の個数 (#81~120)

#	(±) 緯度	重み	格子点数
81	4. 46489170863444E+01	6. 97349861527033E-03	560
82	4. 40872959588346E+01	7. 04068543052255E-03	576
83	4. 35256748061674E+01	7. 10719576549483E-03	576
84	4. 29640536292911E+01	7. 17302322976814E-03	576
85	4. 24024324291106E+01	7. 23816149853473E-03	576
86	4. 18408112064890E+01	7. 30260431320588E-03	576
87	4. 12791899622508E+01	7. 36634548201319E-03	640
88	4. 07175686971841E+01	7. 42937888060353E-03	640
89	4. 01559474120422E+01	7. 49169845262744E-03	640
90	3. 95943261075457E+01	7. 55329821032109E-03	640
91	3. 90327047843849E+01	7. 61417223508153E-03	640
92	3. 84710834432205E+01	7. 67431467803540E-03	640
93	3. 79094620846860E+01	7. 73371976060089E-03	640
94	3. 73478407093888E+01	7. 79238177504295E-03	640
95	3. 67862193179117E+01	7. 85029508502170E-03	640
96	3. 62245979108143E+01	7. 90745412613397E-03	640
97	3. 56629764886338E+01	7. 96385340644796E-03	640
98	3. 51013550518869E+01	8. 01948750703089E-03	640
99	3. 45397336010700E+01	8. 07435108246969E-03	640
100	3. 39781121366611E+01	8. 12843886138454E-03	640
101	3. 34164906591199E+01	8. 18174564693541E-03	640
102	3. 28548691688896E+01	8. 23426631732136E-03	640
103	3. 22932476663967E+01	8. 28599582627264E-03	640
104	3. 17316261520529E+01	8. 33692920353555E-03	640
105	3. 11700046262550E+01	8. 38706155535001E-03	640
106	3. 06083830893861E+01	8. 43638806491971E-03	640
107	3. 00467615418160E+01	8. 48490399287498E-03	640
108	2. 94851399839021E+01	8. 53260467772811E-03	640
109	2. 89235184159896E+01	8. 57948553632125E-03	640
110	2. 83618968384127E+01	8. 62554206426676E-03	640
111	2. 78002752514945E+01	8. 67076983638001E-03	640
112	2. 72386536555477E+01	8. 71516450710455E-03	640
113	2. 66770320508754E+01	8. 75872181092963E-03	640
114	2. 61154104377713E+01	8. 80143756280006E-03	640
115	2. 55537888165200E+01	8. 84330765851829E-03	640
116	2. 49921671873976E+01	8. 88432807513879E-03	640
117	2. 44305455506723E+01	8. 92449487135452E-03	640
118	2. 38689239066043E+01	8. 96380418787565E-03	640
119	2. 33073022554465E+01	9. 00225224780040E-03	640
120	2. 27456805974447E+01	9. 03983535697787E-03	640

表 6-4 モデル格子の緯度と各緯線上の格子点の個数 (#121~160)

#	(±) 緯度	重み	格子点数
121	2. 21840589328380E+01	9. 07654990436300E-03	640
122	2. 16224372618593E+01	9. 11239236236356E-03	640
123	2. 10608155847349E+01	9. 14735928717903E-03	640
124	2. 04991939016857E+01	9. 18144731913153E-03	640
125	1. 99375722129269E+01	9. 21465318298861E-03	640
126	1. 93759505186682E+01	9. 24697368827792E-03	640
127	1. 88143288191145E+01	9. 27840572959380E-03	640
128	1. 82527071144658E+01	9. 30894628689559E-03	640
129	1. 76910854049175E+01	9. 33859242579788E-03	640
130	1. 71294636906605E+01	9. 36734129785236E-03	640
131	1. 65678419718816E+01	9. 39519014082157E-03	640
132	1. 60062202487636E+01	9. 42213627894429E-03	640
133	1. 54445985214858E+01	9. 44817712319260E-03	640
134	1. 48829767902235E+01	9. 47331017152068E-03	640
135	1. 43213550551487E+01	9. 49753300910516E-03	640
136	1. 37597333164304E+01	9. 52084330857721E-03	640
137	1. 31981115742342E+01	9. 54323883024608E-03	640
138	1. 26364898287229E+01	9. 56471742231435E-03	640
139	1. 20748680800568E+01	9. 58527702108464E-03	640
140	1. 15132463283931E+01	9. 60491565115794E-03	640
141	1. 09516245738869E+01	9. 62363142562335E-03	640
142	1. 03900028166909E+01	9. 64142254623943E-03	640
143	9. 82838105695560E+00	9. 65828730360694E-03	640
144	9. 26675929482938E+00	9. 67422407733312E-03	640
145	8. 70513753045879E+00	9. 68923133618732E-03	640
146	8. 14351576398856E+00	9. 70330763824821E-03	640
147	7. 58189399556175E+00	9. 71645163104223E-03	640
148	7. 02027222531985E+00	9. 72866205167360E-03	640
149	6. 45865045340296E+00	9. 73993772694564E-03	640
150	5. 89702867994979E+00	9. 75027757347349E-03	640
151	5. 33540690509796E+00	9. 75968059778822E-03	640
152	4. 77378512898387E+00	9. 76814589643226E-03	640
153	4. 21216335174302E+00	9. 77567265604622E-03	640
154	3. 65054157350999E+00	9. 78226015344704E-03	640
155	3. 08891979441865E+00	9. 78790775569746E-03	640
156	2. 52729801460213E+00	9. 79261492016686E-03	640
157	1. 96567623419308E+00	9. 79638119458336E-03	640
158	1. 40405445332361E+00	9. 79920621707733E-03	640
159	8. 42432672125539E-01	9. 80108971621609E-03	640
160	2. 80810890730407E-01	9. 80203151103004E-03	640

7. 鉛直座標

7.1. ハイブリッド座標系

モデル面データでは 60 層のハイブリッド面に対してデータを出力している。 各ハイブリッド面は地上気圧 p_s と表 7-1,表 7-2 の係数 A, B を用いて表されるハーフレベル

$$p_{k+\frac{1}{2}} = A_{k+\frac{1}{2}} + B_{k+\frac{1}{2}} p_s$$

を境界として定義される (k=0, 1, 2, ..., 60)。各ハイブリッド面を代表する気圧 (フルレベル) は,最上層 (k=60) を除き,次式で表される (Simmons and Burridge 1981)。

$$p_{k} = \exp\left[\frac{1}{\Delta p_{k}} \left(p_{k-\frac{1}{2}} \ln p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}} \ln p_{k+\frac{1}{2}}\right) - C\right]$$

ここで、C=1, k=1, 2, ..., 59 である。最上層 (k=60) のフルレベルは

$$p_{60} = \frac{1}{2} p_{59.5}$$

で表される。

表 7-1, 表 7-2 には地上気圧 p_s が 1000 hPa の場合のハーフレベル, フルレベルを併せて記してある。

モデル格子データ編

表 7-1 モデル面 (第1~39層)

	フルレ	ベル			
A (Pa) B p (Pa) #				p (Pa)	#
0.0000000000000E+00	1.0000000000000E+00	100000	0.5	100000.0	地上
0.0000000000000E+00	9. 97000000000000E-01	99700	1. 5	99850.0	1
0.0000000000000E+00	9. 94000000000000E-01	99400	2. 5	99550.0	2
0.0000000000000E+00	9.8900000000000E-01	98900	3. 5	99149. 9	3
0. 0000000000000E+00	9.8200000000000E-01	98200	4. 5	98549.8	4
0. 0000000000000E+00	9. 72000000000000E-01	97200	5. 5	97699.6	5
0. 0000000000000E+00	9. 6000000000000E-01	96000	6. 5	96599.4	6
0. 0000000000000E+00	9. 4600000000000E-01	94600	7. 5	95299. 1	7
1. 33051011276943E+02	9. 26669489887231E-01	92800	8. 5	93698.6	8
3. 64904148871589E+02	9. 04350958511284E-01	90800	9. 5	91798. 2	9
6. 34602716447362E+02	8. 79653972835526E-01	88600	10. 5	89697.8	10
9. 59797167291774E+02	8.51402028327082E-01	86100	11. 5	87347.0	11
1. 34768004165515E+03	8. 19523199583449E-01	83300	12. 5	84696. 1	12
1. 79090739595110E+03	7.85090926040489E-01	80300	13. 5	81795.4	13
2. 29484168994850E+03	7. 48051583100515E-01	77100	14. 5	78694.6	14
2. 84748477771176E+03	7. 09525152222882E-01	73800	15. 5	75444. 0	15
3. 46887148811864E+03	6. 68311285118814E-01	70300	16. 5	72042. 9	16
4. 16295646296916E+03	6. 24370435370308E-01	66600	17. 5	68441.7	17
4. 89188083250491E+03	5.80081191674951E-01	62900	18. 5	64741. 2	18
5. 67182423980408E+03	5. 34281757601959E-01	59100	19. 5	60990. 1	19
6. 47671299638532E+03	4. 88232870036147E-01	55300	20. 5	57189. 5	20
7. 29746989472049E+03	4. 42025301052795E-01	51500	21. 5	53388. 7	21
8. 12215979124915E+03	3. 95778402087509E-01	47700	22. 5	49587. 9	22
8. 91408220106234E+03	3.50859177989377E-01	44000	23. 5	45837.6	23
9. 65618191050164E+03	3.07438180894984E-01	40400	24. 5	42187. 2	24
1. 03294361777746E+04	2.65705638222254E-01	36900	25. 5	38636.8	25
1. 09126384442387E+04	2. 25873615557613E-01	33500	26. 5	35186.3	26
1. 13696478308432E+04	1.89303521691568E-01	30300	27. 5	31886.6	27
1. 16953715974700E+04	1.55046284025300E-01	27200	28. 5	28736. 1	28
1. 18612530873948E+04	1. 24387469126052E-01	24300	29. 5	25736. 4	29
1. 18554343163493E+04	9. 64456568365075E-02	21500	30. 5	22885.7	30
1. 16633553655803E+04	7. 23664463441966E-02	18900	31. 5	20186.0	31
1. 12854040644942E+04	5. 21459593550578E-02	16500	32. 5	17686.4	32
1. 07299494055679E+04	3.57005059443214E-02	14300	33. 5	15386. 9	33
1. 00146150535107E+04	2. 28538494648935E-02	12300	34. 5	13287.5	34
9. 16724703583310E+03	1. 33275296416689E-02	10500	35. 5	11388. 1	35
8. 22624490770442E+03	6. 73755092295582E-03	8900	36. 5	9689.0	36
7. 20156898029828E+03	2. 48431019701722E-03	7450	37. 5	8164.3	37
6. 08867300853392E+03	1. 13269914660783E-04	6100	38. 5	6763.8	38
4. 9500000000000E+03	0.0000000000000E+00	4950	39. 5	5515.0	39

表 7-2 モデル面 (第40~60層)

	フルレ	ベル			
A (Pa)	В	p (Pa)	#	p (Pa)	#
4.0000000000000E+03	0.0000000000000E+00	4000	40.5	4466.6	40
3. 2300000000000E+03	0.0000000000000E+00	3230	41.5	3608. 1	41
2. 6100000000000E+03	0.0000000000000E+00	2610	42. 5	2914. 5	42
2. 1050000000000E+03	0.0000000000000E+00	2105	43. 5	2353. 0	43
1. 7000000000000E+03	0.0000000000000E+00	1700	44. 5	1898. 9	44
1. 3700000000000E+03	0.0000000000000E+00	1370	45. 5	1532. 0	45
1. 10500000000000E+03	0.0000000000000E+00	1105	46. 5	1235. 1	46
8. 9300000000000E+02	0.0000000000000E+00	893	47. 5	997. 1	47
7. 2000000000000E+02	0.0000000000000E+00	720	48. 5	804. 9	48
5. 8100000000000E+02	0.0000000000000E+00	581	49. 5	649.3	49
4. 6900000000000E+02	0.0000000000000E+00	469	50. 5	524. 0	50
3.77000000000000E+02	0.0000000000000E+00	377	51. 5	422. 2	51
3. 0100000000000E+02	0.0000000000000E+00	301	52. 5	338. 3	52
2. 3700000000000E+02	0.0000000000000E+00	237	53. 5	268. 4	53
1.8200000000000E+02	0.0000000000000E+00	182	54. 5	208. 9	54
1. 3600000000000E+02	0.0000000000000E+00	136	55. 5	158. 4	55
9. 7000000000000E+01	0.0000000000000E+00	97	56. 5	116.0	56
6. 5000000000000E+01	0.0000000000000E+00	65	57. 5	80. 5	57
3. 9000000000000E+01	0.0000000000000E+00	39	58. 5	51. 5	58
2. 0000000000000E+01	0.0000000000000E+00	20	59. 5	29. 0	59
0.0000000000000E+00	0.00000000000000E+00	0	60.5	10.0	60

7.2. 温位座標系

等温位面データでは次の21層の等温位面に対してデータを出力している。 270,280,290,300,310,320,330,340,350,360,370,380,390,400,425,450,475,550,650,750,850K 但し,比湿については,270~400Kの14層のみ出力している。

7.3. 陸面モデルの土壌層

陸面モデルの土壌層の空隙率,及び厚さは,表 5-1 の植生の種類毎に以下の通り定義されている。

表 7-3 陸面モデルの土壌層

数字	空隙率		厚さ (m)	
符号	$(m^3 m^{-3})$	最上層 (#1)	中間層 (#2)	最下層 (#3)
0	_	-	-	-
1	0. 42	0.02	1. 48	2
2	0. 42	0.02	1. 48	2
3	0. 42	0.02	1. 48	2
4	0. 42	0.02	1. 48	2
5	0. 42	0.02	1. 48	2
6	0. 42	0.02	0. 47	1
7	0. 42	0.02	0. 47	1
8	0. 4352	0.02	0. 47	1
9	0. 4352	0.02	0. 17	0. 3
10	0. 42	0.02	0. 17	1
11	0. 4352	0.02	0. 17	0. 3
12	0. 4577	0.02	0. 47	1
13	0. 4352	1	1	1

8. 物理定数

予報モデルで用いられている代表的な物理定数は以下の通り。

表 8-1 物理定数

量	値
Stefan-Boltzmann定数 σ	5. 67 x 10 ⁻⁸ W m ⁻² K ⁻⁴
地球半径	6. 371 x 10 ⁶ m
地球の自転角速度	$7.29245 \times 10^{-5} \text{ rad s}^{-1}$
重力加速度	9.80665 m s ⁻²
乾燥空気の気体定数	287.04 J K ⁻¹ kg ⁻¹
乾燥空気の定圧比熱 c_p	1004.6 J K ⁻¹ kg ⁻¹
蒸発の潜熱	2. 507 x 10 ⁶ J kg ⁻¹
太陽定数	1365 W m ⁻²

9. 月統計值

9.1. 時別月統計値(Monthly_diurnal)

時別月統計値 (Monthly_diurnal) では時刻別に1か月間の平均・分散を算出している。

第1節第21オクテット(期間の指示符)の値の意味は表9-1の通り。

9.2. 月統計值(Monthly)

月統計値 (Monthly) では、解析値・予報瞬間値については 6 時間値のみ、予報平均値については 0~6 時間予報の平均値の 1 か月間の平均・分散を算出している。

第1節第21オクテット(期間の指示符)の値の意味は表9-1の通り。

表 9-1 月統計値の期間の指示符

数字 符号	意味
113	N個の予報(又は初期化済解析)の平均。各プロダクトは $P1$ で示される予報期間を持つ(初期化済解析の場合は $P1=0$)。プロダクトは与えられた参照時刻から始まる時間間隔 $P2$ ごとの参照時刻を持つ。
123	N個の非初期化済解析の平均で、P2の時間間隔で参照時刻から始まる。
128	N個の予報プロダクト(参照時刻+P1から参照時刻+P2までについてのもの)の 平均。プロダクトは与えられた参照時刻から始まる24時間間隔の参照時刻を持つ。
129	N個の予報の時間分散。各プロダクトは参照時刻+P1から参照時刻+P2までの有効期間を持つ。プロダクトは与えられた参照時刻から始まる24時間間隔の参照時刻を持つ。通報値の単位は第2表(別表含む)に示すものの二乗である。
130	N個の予報プロダクトの平均。最初のプロダクトの有効期間は、Rをオクテット13から17で与えられた参照時刻とするとR+P1からR+P2までである。続くプロダクトは有効期間が(P2-P1)だけ大きい。つまりN個のプロダクトは連続した期間を覆う。プロダクトは与えられた参照時刻から始まる時間間隔(P2-P1)の参照時刻を持つ。
131	N個の予報プロダクトの時間分散。最初のプロダクトの有効期間は、 R をオクテット 1 3 から 1 7 で与えられた参照時刻とすると $R+P$ 1 から $R+P$ 2 までである。続くプロダクトは有効期間が(P 2 $-P$ 1)だけ大きい。つまり N 個のプロダクトは連続した期間を覆う。プロダクトは与えられた参照時刻から始まる時間間隔(P 2 $-P$ 1)の参照時刻を持つ。通報値の単位は第 2 表(別表含む)に示すものの二乗である。
132	N個の予報プロダクトの時間分散。最初のプロダクトの有効期間は、 R をオクテット 1 3 から 1 7 で与えられた参照時刻とすると $R+P$ 1 から $R+P$ 2 までである。続くプロダクトは有効期間が(P $2-P$ 1)だけ大きい。つまりN個のプロダクトは連続した期間を覆う。プロダクトは与えられた参照時刻から始まる時間間隔(P $2-P$ 1)の参照時刻を持つ。通報値の単位は第 2 表(別表含む)に示すものの二乗である。

10. 平年值

以下に記した方法を用いて、1991~2020年の平年値を作成した。

10.1. 日別平滑化平年值

まず、累年の日別値を解析値・予報瞬間値については 6 時間値のみ、予報平均値については 0~6 時間予報の平均値を用いて単純平均して求める。その際、うるう日は無視し、一年をすべて 365 日として扱う。この平均値の時系列には

高周波変動が残っているので、カットオフ周期 60 日、121 項目のランチョスフィルター (Duchon, 1979) をかけ、平滑化した。うるう日の平年値は、2 月 28 日と3月1日の平滑平年値を平均して求めた。

この方法は計算に際しての考え方としては明瞭である反面, うるう日の扱いとフィルターの適用の有無の違いから, 日別平滑平年値から月平均値を計算した場合に, 対応する期間の平年値とは一致しない点に注意する必要がある。

10.2. 月別平年値

月別平年値は累年の月別値を単純平均して求めた。

11. 本計算ストリーム

JRA-55 では計算時間の短縮のため、再解析対象期間を表 11-1 の通り分割して本計算を行っている。また、データ同化サイクルの再実行、及び二次導出量の再作成の場合にも別のストリーム名を割り当てており、第 1 節第 46~49 オクテットはそれぞれのストリーム名を示している。

表 11-1 のストリームのうち、ストリーム間でデータの引継ぎが行われず切断が生じているのは 1958 年 7 月 1 日 00UTC(A003/A002)、1980 年 9 月 1 日 00UTC(A004/B002)、1992 年 10 月 1 日 00UTC(B003/B002)の 3 か所で、その他のストリームの切り替えではデータの引継ぎが行われている。

表 11-1 JRA-55 本計算ストリーム

ストリーム	期間	第1節 第46~49 オクテット	備考
		AE03	fcst_column125 (熱エネルギーフラックス) fcst_p125 (雲液水量・雲氷量・オゾン質量混合比) fcst_phy3m125
A003	1958年6月30日 まで	AR03	anl_isentrop125 fcst_column125 (熱エネルギーフラックス以外) fcst_phy2m125 fcst_surf125 (地表面粗度・輝度温度)
		A003	その他のパラメータ
	1050年7月1日	AE02	AE03と同じ
A002	1958年7月1日 から 1974年11月30日	AR02	ARO3と同じものに加えて, anl_isentrop (但し, 1972年12月31日まで)
	1974年11万50日	A002	その他のパラメータ
	1974年12月1日	AE04	AE03と同じ
A004	から	AR04	ARO3と同じ
	1980年8月31日	A004	その他のパラメータ
	1980年9月1日	BE02	AE03と同じ
B002	から	BR02	ARO3と同じものに加えて, anl_isentrop
	1987年5月31日	B002	その他のパラメータ
	1987年6月1日	BE03	AE03と同じ
B003	から	BR03	ARO3と同じ
	1992年9月30日	B003	その他のパラメータ
	1992年10月1日	BE02	AE03と同じ。但し,2012年12月31日まで。
B002	1992年10月1日 から 2013年12月31日	BR02	ARO3と同じ。但し,2012年12月31日まで。 加えて,anl_isentrop(但し,2000年1月31日まで)。
	2013年12月31日	B002	その他のパラメータ
B004	2014年1月1日 から 2018年6月3日 18UTC	B004	
B005	2018年6月3日 21UTC	BR05	fcst_surf125 (但し, 2018年6月4日から2018年10月7日まで)。
	以降	B005	その他のパラメータ

12. JRA-25 プロダクトからの変更点

12.1. 要素分類

JRA-25 プロダクトでは 2 次元の要素と 3 次元の要素とが同一ファイルに出力されているカテゴリーが存在したが、JRA-55 プロダクトでは別々のカテゴリーとして出力し、3 次元の要素については要素別にファイルを作成している(陸面データを除く)。

表 12-1 カテゴリーの変更例 (anl_mdl の場合)

JRA-25	JRA-55		
	モデル面解析値		
	anl_mdl_hgt (ジオポテンシャル高度)		
111	anl_mdl_tmp(気温)		
anl_mdl			
	地表面解析值		
	anl_surf		

また, JRA-25 プロダクトの物理量モニターでは瞬間値・平均値・極値が同一ファイルに出力されていたが, JRA-55 プロダクトでは別々のカテゴリーとして出力している。

表 12-2 カテゴリーの変更例 (fcst_phy2m の場合)

JRA-25	JRA-55
	2次元物理量平均值
	fcst_phy2m
foot phy?m	2次元物理量瞬間值
fcst_phy2m	fcst_surf
	2次元極值 ¹
	minmax_surf

¹極値データの作成はモデル格子の日別値のみで、月統計値、及び、緯度/経度格子データでは作成していない。

12.2. ファイル名中の日時

JRA-25 プロダクトのファイル名中の日時は、瞬間値については解析・予報時刻、平均値については平均期間の終了時刻に対応していたが、このうち、平均値については、JRA-55 プロダクトでは平均期間の開始時刻を表すように変更している。

表 12-3 ファイル名中の日時の変更例(fcst_phy2m. 1981010100 の場合)

	有効期間	
JRA-25	1980年12月31日18UTC~1981年1月1日00UTC	
JRA-55	1981年1月1日00UTC~1981年1月1日03UTC	

12.3. 追加•変更要素

第4章「出力要素」の表中の要素名の右肩に⁺と印がつけられているものは, JRA-55プロダクトに新たに追加した要素を表している。

また、*と印がつけられているものは、JRA-25 プロダクトで予報平均値として 出力していたものを、JRA-55 プロダクトでは予報瞬間値として出力するように 変更した要素を表している。

12.4. 廃止要素

表 12-4 等温位面解析値 (anl_isentrop) 廃止要素

数字 符号	パラメータ	単位
11	気温	K

表 12-5 モデル面予報値 (fcst_mdl) 廃止要素

数 符	字号	パラメータ	単位
	52	相対湿度	割合

表 12-6 2 次元物理量 (fcst_phy2m) 廃止要素

数字 符号	パラメータ	単位	等位面及び層
2	海面更正気圧 (平均)	Pa	平均海面
136	風のu成分(期間平均,地表面)	$m s^{-1}$	10m
137	風のv成分(期間平均,地表面)	$m s^{-1}$	10m
138	気温 (期間平均, 地表面)	K	2m
139	比湿(期間平均,地表面)	$kg kg^{-1}$	2m
80	水温#	K	水面
218	湿潤過程による加熱率	$\mathrm{W}~\mathrm{m}^{-2}$	全大気 (1層とみなす)
168	降水の発生率	%	地表面(地面又は水面)
169	対流性降水の発生率	%	地表面(地面又は水面)
200	気温フラックス,東西成分	K Pa m s ⁻¹	全大気 (1層とみなす)
201	気温フラックス,南北成分	K Pa m s ⁻¹	全大気 (1層とみなす)
219	最大風速	$m s^{-1}$	ハイブリッド面最下層
220		mm hour ⁻¹	地表面(地面又は水面)
76	雲水量	kg m ⁻²	全大気 (1層とみなす)

[#] JRA-55 プロダクトでは海面水温は2次元物理量瞬間値(fcst_surf) の輝度温度として出力されている。

表 12-7 3 次元物理量 (fcst_phy3m) 廃止要素

数字 符号	パラメータ	単位
76	雲水量	kg m ⁻²
175	ジオポテンシャル高度 (期間平均)	gpm
176	風のu成分 (期間平均)	m s ⁻¹
177		m s ⁻¹
178		Pa s ⁻¹
179	気温 (期間平均)	K
180	比湿 (期間平均)	kg kg ⁻¹

表 12-8 陸面物理量 (fcst_phyland) 廃止要素

数字 符号	パラメータ	単位	等位面及び層
86	土壤水分量	割合	陸面モデルの土壌層

12.5. 出力時間解像度

JRA-25 プロダクトでは 6 時間間隔でデータが出力されていたが、JRA-55 プロダクトでは、陸面、及び、2 次元の予報値については 3 時間間隔でデータを出力している。

12.6. 鉛直座標

12.6.1. ハイブリッド座標系

JRA-25プロダクトのモデル面データでは40層のハイブリッド面に対してデータを出力していたが、JRA-55プロダクトのモデル面データでは、第7.1節「ハイブリッド座標系」に列挙した60層のハイブリッド面に対してデータを出力している。

12.6.2. 温位座標系

JRA-25 プロダクトの等温位面データでは 20 層の等温位面 (270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 425, 450, 475, 550, 650, 750K) に対してデータを出力していたが, JRA-55 プロダクトの等温位面データでは, 第 7. 2 節「温位座標系」に列挙した 21 層の等温位面に対してデータを出力している (850K を追加)。

12.7. 月統計值

JRA-25 プロダクトの月統計値はビッグエンディアン 4 バイト浮動小数点で出力されていたのに対し、JRA-55 プロダクトの月統計値は日別値と同様に GRIB Edition 1 (WMO 2011) で出力している。

JRA-25 プロダクトの月統計値では日別値の 1 か月間の平均のみ算出していたが、JRA-55 プロダクトでは時刻別の月統計値も算出している。

加えて、JRA-55 プロダクトの月統計値では分散も算出している(但し、陸面予報平均値・2 次元物理量平均値を除く)。分散はファイル名の末尾が"_var"となっている(表 3-1)。

文献目録

- Duchon, C. E. (1979). Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016-1022.
- Ebita, A., S. Kobayashi, Y. Ota, M. Moriya, R. Kumabe, K. Onogi, Y. Harada, S. Yasui, K. Miyaoka, K. Takahashi, H. Kamahori, C. Kobayashi, H. Endo, M. Soma, Y. Oikawa, and T. Ishimizu. (2011). The Japanese 55-year Reanalysis "JRA-55": an interim report. SOLA, 7, 149-152. (この論文は JRA-55 の 2011 年時点の中間報告論文です。JRA-55 の参考文献としては Kobayashi et al. (2015)を参照下さい。).
- Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi,
 H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi.
 (2015). The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48.
- Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji, and R. Taira. (2007). The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369-432.
- Simmons, A. J., and D. M. Burridge. (1981). An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758-766.
- WMO. (2011). Manual on codes I.2. WMO-No. 306. 参照先: http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/VolumeI.2. html
- 気象庁. (2013). 国際気象通報式・別冊. 気象業務支援センター.

モデル格子データ編